Course curriculum
-
-
👋 Introduction
-
🚀 Stages
-
🎯 Expectations
-
🔗 Biweekly Sessions & Support Link
-
-
-
🗺️ Book your One on one
-
-
-
Course Outline
-
Python Overview
-
What is Google Colaboratory?
-
Working in Colab: Simple Math
-
Primitive Data Types
-
Declaring Variables
-
Variables and Primitive Data Types (Practice)
-
Functional Programming and OOP
-
Lists and Tuples
-
Lists and Tuples (Practice)
-
Dictionaries
-
Dictionaries (Practice)
-
For Loops
-
For Loops Assignment (Core)
-
Conditionals
-
Conditionals Exercise (Practice)
-
Intro to Custom Functions
-
Debugging
-
Debugging Exercise (Practice)
-
Custom Functions
-
Measures of Central Tendency
-
Writing a Function to Calculate the Mean
-
Intro to Python Libraries
-
Functions for Measures of Central Tendency
-
Central Tendency Functions (Core)
-
Using Markdown Effectively
-
Project 1 - Part 1 (Core)
-
Interview Questions (Optional)
-
Sets (Optional)
-
While Loops (Optional)
-
-
-
Intro to Pandas DataFrames
-
Working with DataFrames
-
Saving Files to Google Drive
-
Loading Data with Pandas
-
Loading Data (Practice):
-
Saving a dataframe as a .csv
-
Slicing
-
Slicing (Practice)
-
Filtering
-
Filtering (Practice)
-
Pandas Groupby
-
Groupby (Core)
-
🌟 STAGE 2: Application Workshop
-
📝CV
-
🛠️CV Resources
-
🚀CV Do’s & Don’ts
-
📝Finalize your CV
-
✅ CV Checklist
-
🎓Education Section "CV"
-
📝Tailor Your CV
-
📝 [Submission] CV
-
CRISP-DM Workflow
-
Project Overview
-
Phase 2) Data Understanding
-
Initial Inspection
-
Duplicates
-
Missing Values
-
Handling Null Values
-
Consistency
-
Combine or Separate Features
-
Data Cleaning (Core)
-
Project 1 - Part 2 (Core)
-
Additional Pandas Resources
-
Pandas Interview Questions (Optional)
-
-
-
Phase 2.4: Explore Each Feature
-
Why Visualize Your Data?
-
Creating Matplotlib Plots
-
Univariate Visualizations
-
Recreate Interest vs Principal Graph (Practice)
-
Histograms
-
Boxplots
-
Histograms & Boxplots Exercise (Practice)
-
Univariate Categorical Plots
-
Univariate Plots (core)
-
Overview - Multivariate Visualizations
-
Bar Plots
-
Correlation and Heat Maps
-
Regression Plots
-
Multivariate Categorical Plots
-
Multivariate Plots Practice:
-
Data Visualization (Core)
-
Customizing Plots
-
Making a README
-
Project 1 - Part 3 (Core)
-
Matplotlib Styles
-
Saving Plots to Files
-
Data Visualization Interview Questions
-
-
-
1.0 Cover Letter
-
2.0 LinkedIn
-
2.1 Building your LinkedIn Profile
-
2.2 Professional profile photo
-
3.0 Coveto
-
4.0 GitHub
-
🌟 [Submission] Stage 3
-
🌐 Networking Skills
-
About this course
- Free
- 133 lessons
- 0 hours of video content