Course curriculum
-
-
Execution Plan
-
Course Outline
-
Python Overview
-
What is Google Colaboratory?
-
Working in Colab: Simple Math
-
Primitive Data Types
-
Declaring Variables
-
Variables and Primitive Data Types (Practice)
-
Functional Programming and OOP
-
Lists and Tuples
-
Lists and Tuples (Practice)
-
Dictionaries
-
Dictionaries (Practice)
-
For Loops
-
For Loops Assignment (Core)
-
Conditionals
-
Conditionals Exercise (Practice)
-
Intro to Custom Functions
-
Debugging
-
Debugging Exercise (Practice)
-
Custom Functions
-
Measures of Central Tendency
-
Writing a Function to Calculate the Mean
-
Intro to Python Libraries
-
Functions for Measures of Central Tendency
-
Central Tendency Functions (Core)
-
Using Markdown Effectively
-
Project 1 - Part 1 (Core)
-
Interview Questions (Optional)
-
Sets (Optional)
-
While Loops (Optional)
-
-
-
Intro to Pandas DataFrames
-
Working with DataFrames
-
Saving Files to Google Drive
-
Loading Data with Pandas
-
Loading Data (Practice):
-
Saving a dataframe as a .csv
-
Slicing
-
Slicing (Practice)
-
Filtering
-
Filtering (Practice)
-
Pandas Groupby
-
Groupby (Core)
-
CRISP-DM Workflow
-
Project Overview
-
Phase 2) Data Understanding
-
Initial Inspection
-
Duplicates
-
Missing Values
-
Handling Null Values
-
Consistency
-
Combine or Separate Features
-
Data Cleaning (Core)
-
Project 1 - Part 2 (Core)
-
Additional Pandas Resources
-
Pandas Interview Questions (Optional)
-
-
-
Phase 2.4: Explore Each Feature
-
Why Visualize Your Data?
-
Creating Matplotlib Plots
-
Univariate Visualizations
-
Recreate Interest vs Principal Graph (Practice)
-
Histograms
-
Boxplots
-
Histograms & Boxplots Exercise (Practice)
-
Univariate Categorical Plots
-
Univariate Plots (core)
-
Overview - Multivariate Visualizations
-
Bar Plots
-
Correlation and Heat Maps
-
Regression Plots
-
Multivariate Categorical Plots
-
Multivariate Plots Practice:
-
Data Visualization (Core)
-
Customizing Plots
-
Making a README
-
Project 1 - Part 3 (Core)
-
Matplotlib Styles
-
Saving Plots to Files
-
Data Visualization Interview Questions
-
-
-
Welcome to Belt Exam Prep!
-
Data Science Fundamentals - Belt Exam Practice
-
-
-
Multiple Subplots
-
Combining Plots
-
FacetGrids
-
Annotating Distribution Plots
-
Recreate Graph 2 (Practice)
-
CRISP-DM Phase 3 Overview
-
Preparing Ames for Machine Learning
-
Intro to Modeling
-
Types of Features
-
EDA Functions Part 1
-
EDA Functions Part 2
-
EDA Functions Part 3
-
Inspecting Features
-
Feature Inspection (Practice)
-
Colab Code Snippets
-
Project 1 - Part 4 (Core)
-
Data Viz Resources (Optional)
-
Folium (Optional)
-
Interactive Visualizations (Optional)
-
Interview Questions:
-
Installing Jupyter
-
-
-
Exam Policies
-
Exam grading system
-
How to submit the exam?
-
Belt Exam
-

About this course
- $750.00
- 106 lessons
- 0 hours of video content